Linear perturbations of a nonoscillatory second order differential equation II

Author:

Trench William

Abstract

Let y 1 y_1 and y 2 y_2 be principal and nonprincipal solutions of the nonoscillatory differential equation ( r ( t ) y ) + f ( t ) y = 0 (r(t)y’)’+f(t)y=0 . In an earlier paper we showed that if ( f g ) y 1 y 2 d t \int ^\infty (f-g)y_1y_2\,dt converges (perhaps conditionally), and a related improper integral converges absolutely and sufficently rapidly, then the differential equation ( r ( t ) x ) + g ( t ) x = 0 (r(t)x’)’+g(t)x=0 has solutions x 1 x_1 and x 2 x_2 that behave asymptotically like y 1 y_1 and y 2 y_2 . Here we consider the case where ( f g ) y 2 2 d t \int ^\infty (f-g)y_2^2\,dt converges (perhaps conditionally) without any additional assumption requiring absolute convergence.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference6 articles.

1. Asymptotic integrations of nonoscillatory second order differential equations;Chen, Shao Zhu;Trans. Amer. Math. Soc.,1991

2. Necessary and sufficient conditions for the solvability of a problem of Hartman and Wintner;Chernyavskaya, N.;Proc. Amer. Math. Soc.,1997

3. On a problem of Hartman and Wintner;Chernyavskaya, N.;Proc. Roy. Soc. Edinburgh Sect. A,1998

4. Asymptotic integration of a second order ordinary differential equation;Šimša, Jaromír;Proc. Amer. Math. Soc.,1987

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications to Classes of Scalar Linear Differential Equations;Asymptotic Integration of Differential and Difference Equations;2015

2. Introduction, Notation, and Background;Asymptotic Integration of Differential and Difference Equations;2015

3. Interpolation in the asymptotic integration of nonoscillatory differential equations;Doklady Mathematics;2012-04

4. Asymptotic integration of nonoscillatory differential equations: a unified approach;Journal of Dynamical and Control Systems;2011-07

5. Linear perturbations of a nonoscillatory second-order dynamic equation;Journal of Difference Equations and Applications;2009-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3