A characterisation of anti-Löwner functions

Author:

Audenaert Koenraad

Abstract

According to a celebrated result by Löwner, a real-valued function f f is operator monotone if and only if its Löwner matrix, which is the matrix of divided differences L f = ( f ( x i ) f ( x j ) x i x j ) i , j = 1 N L_f=\left (\frac {f(x_i)-f(x_j)}{x_i-x_j}\right )_{i,j=1}^N , is positive semidefinite for every integer N > 0 N>0 and any choice of x 1 , x 2 , , x N x_1,x_2,\ldots ,x_N . In this paper we answer a question of R. Bhatia, who asked for a characterisation of real-valued functions g g defined on ( 0 , + ) (0,+\infty ) for which the matrix of divided sums K g = ( g ( x i ) + g ( x j ) x i + x j ) i , j = 1 N K_g=\left (\frac {g(x_i)+g(x_j)}{x_i+x_j}\right )_{i,j=1}^N , which we call its anti-Löwner matrix, is positive semidefinite for every integer N > 0 N>0 and any choice of x 1 , x 2 , , x N ( 0 , + ) x_1,x_2,\ldots ,x_N\in (0,+\infty ) . Such functions, which we call anti-Löwner functions, have applications in the theory of Lyapunov-type equations.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference5 articles.

1. Graduate Texts in Mathematics;Bhatia, Rajendra,1997

2. Princeton Series in Applied Mathematics;Bhatia, Rajendra,2007

3. Die Grundlehren der mathematischen Wissenschaften, Band 207;Donoghue, William F., Jr.,1974

4. On the definiteness of the solutions of certain matrix equations;Kwong, Man Kam;Linear Algebra Appl.,1988

5. Some results on matrix monotone functions;Kwong, Man Kam;Linear Algebra Appl.,1989

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Operator mean inequalities and Kwong functions;Archiv der Mathematik;2024-04-12

2. Inertia of Kwong matrices;Journal of Spectral Theory;2024-02-13

3. Positivity around Cauchy matrices;Positivity;2020-06-24

4. Conditional negativity of Kwong matrices II;Linear and Multilinear Algebra;2020-03-02

5. Some matrix inequalities related to Kwong functions;Linear and Multilinear Algebra;2018-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3