Spanning and independence properties of frame partitions

Author:

Bodmann Bernhard,Casazza Peter,Paulsen Vern,Speegle Darrin

Abstract

We answer a number of open problems in frame theory concerning the decomposition of frames into linearly independent and/or spanning sets. We prove that Parseval frames with norms bounded away from 1 1 can be decomposed into a number of sets whose complements are spanning, where the number of these sets only depends on the norm bound. Further, we prove a stronger result for Parseval frames whose norms are uniformly small, which shows that in addition to the spanning property, the sets can be chosen to be independent and the complement of each set can contain a number of disjoint, spanning sets.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

1. Extreme points in sets of positive linear maps on \cal𝐵(\cal𝐻);Anderson, Joel;J. Functional Analysis,1979

2. A quantitative notion of redundancy for finite frames;Bodmann, Bernhard G.;Appl. Comput. Harmon. Anal.,2011

3. Frames and the Feichtinger conjecture;Casazza, Peter G.;Proc. Amer. Math. Soc.,2005

4. The Kadison-Singer problem in mathematics and engineering: a detailed account;Casazza, Peter G.,2006

5. A redundant version of the Rado-Horn theorem;Casazza, Peter G.;Linear Algebra Appl.,2006

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exponential bases for partitions of intervals;Applied and Computational Harmonic Analysis;2024-01

2. Erasure recovery matrices for encoder protection;Applied and Computational Harmonic Analysis;2020-03

3. Riesz bases of exponentials for partitions of intervals;2019 13th International conference on Sampling Theory and Applications (SampTA);2019-07

4. Improved bounds in Weaver and Feichtinger conjectures;Journal für die reine und angewandte Mathematik (Crelles Journal);2019-04-01

5. Parseval p-frames and the Feichtinger conjecture;Journal of Mathematical Analysis and Applications;2015-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3