On a result of Brezis and Mawhin

Author:

Manásevich R.,Ward J.

Abstract

Brezis and Mawhin proved the existence of at least one T T periodic solution for differential equations of the form (0.1) ( ϕ ( u ) ) g ( t , u ) = h ( t ) \begin{equation}\notag (\phi (u^{\prime }))^{\prime }-g(t,u)=h(t)\tag *{(0.1)} \end{equation} when ϕ : ( a , a ) R , \phi :(-a,a)\rightarrow \mathbb {R}, 0 > a > 0>a>\infty , is an increasing homeomorphism with ϕ ( 0 ) = 0 \phi (0)=0 , g g is a Carathéodory function T T periodic with respect to t t , 2 π 2\pi periodic with respect to u u , of mean value zero with respect to u u , and h L l o c 1 ( R ) h\in L_{loc}^{1}(\mathbb {R}) is T T periodic and has mean value zero. Their proof was partly variational. First it was shown that the corresponding action integral had a minimum at some point u 0 u_{0} in a closed convex subset K \mathcal {K} of the space of T T periodic Lipschitz functions. However, u 0 u_{0} may not be an interior point of K \mathcal {K} , so it may not be a critical point of the action integral. The authors used an ingenious argument based on variational inequalities and uniqueness of a T T periodic solution to (0.1) when g ( t , u ) = u g(t,u)=u to show that u 0 u_{0} is indeed a T T periodic solution of (0.1). Here we make full use of the variational structure of the problem to obtain Brezis and Mawhin’s result.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference4 articles.

1. Periodic solutions of the forced relativistic pendulum;Brezis, Haïm;Differential Integral Equations,2010

2. Applied Mathematical Sciences;Mawhin, Jean,1989

3. Some minimax theorems and applications to nonlinear partial differential equations;Rabinowitz, Paul H.,1978

4. CBMS Regional Conference Series in Mathematics;Rabinowitz, Paul H.,1986

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3