P. Turán [Über die Ableitung von Polynomen, Comositio Math. 7 (1939), 89–95] proved that if all the zeros of a polynomial
p
p
lie in the unit interval
I
=
def
[
−
1
,
1
]
I \overset {\text {def}}{=} [-1,1]
, then
‖
p
′
‖
L
∞
(
I
)
≥
deg
(
p
)
/
6
‖
p
‖
L
∞
(
I
)
\|p’\|_{L^{\infty }(I)}\ge {\sqrt {\deg (p)}}/{6}\; \|p\|_{L^{\infty }(I)}\;
. Our goal is to study the feasibility of
lim
n
→
∞
‖
p
n
′
‖
X
/
‖
p
n
‖
Y
=
∞
\lim _{{n\to \infty } }{\|p_{n}’\|_{X}} / {\|p_{n}\|_{Y}} =\infty
for sequences of polynomials
{
p
n
}
n
∈
N
\{p_{n}\}_{n\in \mathbb N }
whose zeros satisfy certain conditions, and to obtain lower bounds for derivatives of (generalized) polynomials and Remez type inequalities for generalized polynomials in various spaces.