The Li-Yau-Hamilton inequality for Yamabe flow on a closed CR 3-manifold

Author:

Chang Shu-Cheng,Chiu Hung-Lin,Wu Chin-Tung

Abstract

We deform the contact form by the (normalized) CR Yamabe flow on a closed spherical CR 3 3 -manifold. We show that if a contact form evolves with positive Tanaka-Webster curvature and vanishing torsion from initial data, then we obtain a new Li-Yau-Hamilton inequality for the CR Yamabe flow. By combining this parabolic subgradient estimate with a compactness theorem of a sequence of contact forms, it follows that the CR Yamabe flow exists for all time and converges smoothly to, up to the CR automorphism, a unique limit contact form of positive constant Webster scalar curvature on a closed CR 3 3 -manifold, which is CR equivalent to the standard CR 3 3 -sphere with positive Tanaka-Webster curvature and vanishing torsion.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference31 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subgradient estimates for a nonlinear subparabolic equation on complete pseudo-Hermitian manifolds;Calculus of Variations and Partial Differential Equations;2024-04-04

2. CR Yamabe constant, CR Yamabe flow and its soliton;Nonlinear Analysis;2020-10

3. Yamabe solitons on 3-dimensional contact metric manifolds with Qφ = φQ;International Journal of Geometric Methods in Modern Physics;2019-03

4. First eigenvalues of geometric operators under the Yamabe flow;Annals of Global Analysis and Geometry;2018-03-27

5. Convergence of the CR Yamabe flow;Mathematische Annalen;2017-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3