Boundary crossing probabilities for stationary Gaussian processes and Brownian motion

Author:

Cuzick Jack

Abstract

Let X ( t ) X(t) be a stationary Gaussian process, f ( t ) f(t) a continuous function, and T T a finite or infinite interval. This paper develops asymptotic estimates for P ( X ( t ) f ( t ) P(X(t) \geqslant f(t) , some t T t \in T when this probability is small. After transformation to an Ornstein Uhlenbeck process the results are also applicable to Brownian motion. In that special case, if W ( t ) W(t) is Brownian motion, f f is continuously differentiable, and T = [ 0 , T ] T = [0,T] our estimate for P ( W ( t ) f ( t ) P(W(t) \geqslant f(t) , some t T ) t \in T) is \[ Λ = 0 T ( 2 t ) 1 ( f ( t ) / t 1 / 2 ) ϕ ( f ( t ) / t 1 / 2 ) d t + I { ( f ( t ) / t 1 / 2 ) | t = T > 0 } Φ ( f ( T ) / T 1 / 2 ) \Lambda = \int _0^T {{{(2t)}^{ - 1}}(f(t)/{t^{1/2}})\phi (f(t)/{t^{1/2}})} dt + {I_{\{ (f(t)/{t^{1/2}})’{|_{t = T}} > 0\} }}{\Phi ^ \ast }(f(T)/{T^{1/2}}) \] provided Λ \Lambda is small. Here ϕ \phi is the standard normal density and Φ {\Phi ^ \ast } is its upper tail distribution. Our approach is to find an approximate first passage density and then compute crossing probabilities as a one-dimensional integral. In the case of boundaries without cusps, our results unify and extend separate results for crossings of constant levels developed by Pickands, and Qualls-Watanabe, and crossings of rapidly increasing barriers studied by Berman. Applications are also briefly explored.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference17 articles.

1. Excursions of stationary Gaussian processes above high moving barriers;Berman, Simeon M.;Ann. Probability,1973

2. Sojourns and extremes of Gaussian processes;Berman, Simeon M.;Ann. Probability,1974

3. On distribution function—moment relationships in a stationary point process;Cramér, Harald;Z. Wahrscheinlichkeitstheorie und Verw. Gebiete,1971

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3