Doi-Hopf modules, Yetter-Drinfel’d modules and Frobenius type properties

Author:

Caenepeel S.,Militaru G.,Zhu Shenglin

Abstract

We study the following question: when is the right adjoint of the forgetful functor from the category of ( H , A , C ) (H,A,C) -Doi-Hopf modules to the category of A A -modules also a left adjoint? We can give some necessary and sufficient conditions; one of the equivalent conditions is that C A C\otimes A and the smash product A # C A\# C^* are isomorphic as ( A , A # C ) (A, A\# C^*) -bimodules. The isomorphism can be described using a generalized type of integral. Our results may be applied to some specific cases. In particular, we study the case A = H A=H , and this leads to the notion of k k -Frobenius H H -module coalgebra. In the special case of Yetter-Drinfel′d modules over a field, the right adjoint is also a left adjoint of the forgetful functor if and only if H H is finite dimensional and unimodular.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference24 articles.

1. Graduate Texts in Mathematics, Vol. 13;Anderson, Frank W.,1974

2. S. Caenepeel, G. Militaru, S. Zhu, Crossed modules and Doi-Hopf modules, Israel J. Math., to appear.

3. Induction functors for the Doi-Koppinen unified Hopf modules;Caenepeel, S.,1995

4. Gradings of finite support. Application to injective objects;Dǎscǎlescu, S.;J. Pure Appl. Algebra,1996

5. Homological coalgebra;Doi, Yukio;J. Math. Soc. Japan,1981

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comodule theories in Grothendieck categories and relative Hopf objects;Journal of Pure and Applied Algebra;2024-06

2. Heavily separable functors of the second kind and applications;Journal of Algebra;2024-04

3. Entwined Modules Over Representations of Categories;Algebras and Representation Theory;2023-05-22

4. Entwined modules over linear categories and Galois extensions;Israel Journal of Mathematics;2021-03

5. FS-coalgebras and crossed coproducts;Georgian Mathematical Journal;2019-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3