The flat model structure on 𝐂𝐡(𝐑)

Author:

Gillespie James

Abstract

Given a cotorsion pair ( A , B ) (\mathcal {A},\mathcal {B}) in an abelian category C \mathcal {C} with enough A \mathcal {A} objects and enough B \mathcal {B} objects, we define two cotorsion pairs in the category C h ( C ) \mathbf {Ch(\mathcal {C})} of unbounded chain complexes. We see that these two cotorsion pairs are related in a nice way when ( A , B ) (\mathcal {A},\mathcal {B}) is hereditary. We then show that both of these induced cotorsion pairs are complete when ( A , B ) (\mathcal {A},\mathcal {B}) is the “flat” cotorsion pair of R R -modules. This proves the flat cover conjecture for (possibly unbounded) chain complexes and also gives us a new “flat” model category structure on C h ( R ) \mathbf {Ch}(R) . In the last section we use the theory of model categories to show that we can define Ext R n ( M , N ) \operatorname {Ext}^n_R(M,N) using a flat resolution of M M and a cotorsion coresolution of N N .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

1. Covers and envelopes in Grothendieck categories: flat covers of complexes with applications;Aldrich, S. Tempest;J. Algebra,2001

2. Homotopy theories and model categories;Dwyer, W. G.,1995

3. All modules have flat covers;Bican, L.;Bull. London Math. Soc.,2001

4. How to make Ext vanish;Eklof, Paul C.;Bull. London Math. Soc.,2001

5. [EEGO] E. Enochs, S. Estrada, J.R. García-Rozas, and L. Oyonarte, Flat covers of quasi-coherent sheaves, preprint, 2000.

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cotorsion pairs and model structures on Morita rings;Journal of Algebra;2025-01

2. Quillen equivalences inducing Grothendieck duality for unbounded chain complexes of sheaves;Communications in Contemporary Mathematics;2024-08-14

3. Completeness of Induced Cotorsion Pairs in Representation Categories of Rooted Quivers;Acta Mathematica Sinica, English Series;2024-07-18

4. Dimension of complexes related to special Gorenstein projective precovers (III);Communications in Algebra;2024-07-14

5. Homotopy in Exact Categories;Memoirs of the American Mathematical Society;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3