Rumely’s local global principle for algebraic 𝑃𝒮𝒞 fields over rings

Author:

Jarden Moshe,Razon Aharon

Abstract

Let S \mathcal {S} be a finite set of rational primes. We denote the maximal Galois extension of Q \mathbb {Q} in which all p S p\in \mathcal {S} totally decompose by N N . We also denote the fixed field in N N of e e elements σ 1 , , σ e \sigma _{1},\ldots , \sigma _{e} in the absolute Galois group G ( Q ) G( \mathbb {Q}) of Q \mathbb {Q} by N ( σ ) N( {\boldsymbol \sigma }) . We denote the ring of integers of a given algebraic extension M M of Q \mathbb {Q} by Z M \mathbb {Z}_{M} . We also denote the set of all valuations of M M (resp., which lie over S S ) by V M \mathcal {V}_{M} (resp., S M \mathcal {S}_{M} ). If v V M v\in \mathcal {V}_{M} , then O M , v O_{M,v} denotes the ring of integers of a Henselization of M M with respect to v v . We prove that for almost all σ G ( Q ) e {\boldsymbol \sigma }\in G( \mathbb {Q})^{e} , the field M = N ( σ ) M=N( {\boldsymbol \sigma }) satisfies the following local global principle: Let V V be an affine absolutely irreducible variety defined over M M . Suppose that V ( O M , v ) V(O_{M,v})\not =\varnothing for each v V M S M v\in \mathcal {V}_{M}\backslash \mathcal {S}_{M} and V s i m ( O M , v ) V_{\mathrm {sim}}(O_{M,v})\not =\varnothing for each v S M v\in \mathcal {S}_{M} . Then V ( O M ) V(O_{M})\not =\varnothing . We also prove two approximation theorems for M M .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference30 articles.

1. On Diophantine equations over the ring of all algebraic integers;Cantor, David C.;J. Number Theory,1984

2. On polynomials with only real roots;Erdös, P.;Ann. of Math. (2),1939

3. Hilbert’s tenth problem: Diophantine equations: positive aspects of a negative solution;Davis, Martin,1976

4. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)];Fried, Michael D.,1986

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3