The authors prove that bilinear operators given by finite sums of products of Calderón-Zygmund operators on
R
n
\mathbb {R}^{n}
are bounded from
H
K
˙
q
1
α
1
,
p
1
×
H
K
˙
q
2
α
2
,
p
2
H\dot K_{q_{1}}^{\alpha _{1},p_{1}}\times H\dot K_{q_{2}}^{\alpha _{2},p_{2}}
into
H
K
˙
q
α
,
p
H\dot K_{q}^{\alpha ,p}
if and only if they have vanishing moments up to a certain order dictated by the target space. Here
H
K
˙
q
α
,
p
H\dot K_{q}^{\alpha ,p}
are homogeneous Herz-type Hardy spaces with
1
/
p
=
1
/
p
1
+
1
/
p
2
,
1/p=1/p_{1}+1/p_{2},
0
>
p
i
≤
∞
,
0>p_{i}\le \infty ,
1
/
q
=
1
/
q
1
+
1
/
q
2
,
1/q=1/q_{1}+1/q_{2},
1
>
q
1
,
q
2
>
∞
,
1>q_{1},q_{2}>\infty ,
1
≤
q
>
∞
,
1\le q>\infty ,
α
=
α
1
+
α
2
\alpha =\alpha _{1}+\alpha _{2}
and
−
n
/
q
i
>
α
i
>
∞
-n/q_{i}>\alpha _{i}>\infty
. As an application they obtain that the commutator of a Calderón-Zygmund operator with a BMO function maps a Herz space into itself.