Representation of holomorphic functions by boundary integrals

Author:

Baernstein Albert

Abstract

Let K K be a compact locally connected set in the plane and let f f be a function holomorphic in the extended complement of K K with f ( ) = 0 f(\infty ) = 0 . We prove that there exists a sequence of measures { μ n } \{ {\mu _n}\} on K K satisfying lim n | | μ n | | 1 / n = 0 {\lim _{n \to \infty }}||{\mu _n}|{|^{1/n}} = 0 such that f ( z ) = n = 0 K ( w z ) n 1 d μ n ( w ) ( z K ) f(z) = \sum \nolimits _{n = 0}^\infty {\int _K {{{(w - z)}^{ - n - 1}}d{\mu _n}(w)(z \in K)} } . It follows from the proof that two topologies for the space of functions holomorphic on K K are the same. One of these is the inductive limit topology introduced by Köthe, and the other is defined by a family of seminorms which involve only the values of the functions and their derivatives on K K . A key lemma is an open mapping theorem for certain locally convex spaces. The representation theorem and the identity of the two topologies is false when K K is a compact subset of the unit circle which is not locally connected.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. Actualit\'{e}s Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1189;Bourbaki, N.,1953

2. Sur les espaces (𝐹) et (𝐷𝐹);Grothendieck, Alexandre;Summa Brasil. Math.,1954

3. Harmonic functions on the unit disc. I, II;Johnson, Guy, Jr.;Illinois J. Math.,1968

4. Dualität in der Funktionentheorie;Köthe, Gottfried;J. Reine Angew. Math.,1953

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3