Matching theory for combinatorial geometries

Author:

Aigner Martin,Dowling Thomas A.

Abstract

Given two combinatorial (pre-) geometries and an arbitrary binary relation between their point sets, a matching is a subrelation which defines a bijection between independent sets of the geometries. The theory of matchings of maximum cardinality is developed in two directions, one of an algorithmic, the other of a structural nature. In the first part, the concept of an augmenting chain is introduced to establish as principal results a min-max type theorem and a generalized Marriage Theorem. In the second part, Ore’s notion of a deficiency function for bipartite graphs is extended to determine the structure of the set of critical sets, i.e. those with maximum deficiency. The two parts of the investigation are then connected using the theory of Galois connections.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. Matching theorems for combinatorial geometries;Aigner, Martin;Bull. Amer. Math. Soc.,1970

2. Collection Universitaire de Math\'{e}matiques, II;Berge, Claude,1958

3. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1940; rev. ed., 1948, 1967. MR 1, 325; MR 10, 673.

4. Submodular functions, matroids, and certain polyhedra;Edmonds, Jack,1970

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Matroid Intersection under Restricted Oracles;SIAM Journal on Discrete Mathematics;2023-06-21

2. A Polynomial Lower Bound on the Number of Rounds for Parallel Submodular Function Minimization and Matroid Intersection;SIAM Journal on Computing;2023-02-07

3. Exact and approximation algorithms for weighted matroid intersection;Mathematical Programming;2018-03-20

4. Parametric Matroid of Rough Set;International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems;2015-12

5. The popular matching and condensation problems under matroid constraints;Journal of Combinatorial Optimization;2015-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3