Representations of quadratic Jordan algebras

Author:

McCrimmon Kevin

Abstract

Although representations do not play as much of a role in the theory of Jordan algebras as they do in the associative or Lie theories, they are important in considering Wedderburn splitting theorems and other applications. In this paper we develop a representation theory for quadratic Jordan algebras over an arbitrary ring of scalars, generalizing the usual theory for linear Jordan algebras over a field of characteristic 2 \ne 2 . We define multiplication algebras and representations, characterize these abstractly as quadratic specializations, and relate them to bimodules. We obtain first and second cohomology groups with the usual properties. We define a universal object for quadratic specializations and show it is finite dimensional for a finite-dimensional algebra. The most important examples of quadratic representations, those obtained from commuting linear representations, are discussed and examples are given of new “pathological” representations which arise only in characteristic 2.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference6 articles.

1. Extensions of general algebras;Eilenberg, Samuel;Ann. Soc. Polon. Math.,1948

2. American Mathematical Society Colloquium Publications, Vol. XXXIX;Jacobson, Nathan,1968

3. A general theory of Jordan rings;McCrimmon, Kevin;Proc. Nat. Acad. Sci. U.S.A.,1966

4. Quadratic Jordan algebras and cubing operations;McCrimmon, Kevin;Trans. Amer. Math. Soc.,1971

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3