We show that, typically, lower semicontinuous functions on a Banach space densely inherit lower subderivatives of the same degree of smoothness as the norm. In particular every continuous convex function on a space with a Gâteaux (weak Hadamard, Fréchet) smooth renorm is densely Gâteaux (weak Hadamard, Fréchet) differentiable. Our technique relies on a more powerful analogue of Ekeland’s variational principle in which the function is perturbed by a quadratic-like function. This "smooth" variational principle has very broad applicability in problems of nonsmooth analysis.