The zero dispersion limit of the Korteweg-de Vries equation with periodic initial data

Author:

Venakides Stephanos

Abstract

We study the initial value problem for the Korteweg-de Vries equation \[ ( i ) u t 6 u u x + ε 2 u x x x = 0 ({\text {i}})\quad {u_t} - 6u{u_x} + {\varepsilon ^2}{u_{xxx}} = 0 \] in the limit of small dispersion, i.e., ε 0 \varepsilon \to 0 . When the unperturbed equation \[ ( ii ) u t 6 u u x = 0 ({\text {ii}})\quad {u_t} - 6u{u_x} = 0 \] develops a shock, rapid oscillations arise in the solution of the perturbed equation (i) In our study: a. We compute the weak limit of the solution of (i) for periodic initial data as ε 0 \varepsilon \to 0 . b. We show that in the neighborhood of a point ( x , t ) (x,\,t) the solution u ( x , t , ε ) u(x,\,t,\,\varepsilon ) can be approximated either by a constant or by a periodic or by a quasiperiodic solution of equation (i). In the latter case the associated wavenumbers and frequencies are of order O ( 1 / ε ) O(1/\varepsilon ) . c. We compute the number of phases and the wave parameters associated with each phase of the approximating solution as functions of x x and t t . d. We explain the mechanism of the generation of oscillatory phases. Our computations in a and c are subject to the solution of the Lax-Levermore evolution equations (7.7). Our results in b-d rest on a plausible averaging assumption.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference22 articles.

1. International Series in Pure and Applied Mathematics;Bender, Carl M.,1978

2. E. Date and S. Tanaka, Periodic multisolitons of the Korteweg-de Vries equation and Toda lattice, Progr. Theoret. Phys. Suppl., no. 59, 1976.

3. Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties;Dubrovin, B. A.;Uspehi Mat. Nauk,1976

4. Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation;Flaschka, H.;Comm. Pure Appl. Math.,1980

5. Discriminant, transmission, coefficient, and stability bands of Hill’s equation;Keller, Joseph B.;J. Math. Phys.,1984

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3