Nilpotency of derivations. II

Author:

Chung L. O.,Luh Jiang

Abstract

The authors recently proved that for a semiprime ring without 2 2 -torsion, a nilpotent derivation must have odd nilpotency. In this paper, we show the intriguing phenomenon that for a semiprime ring with characteristic 2, the nilpotency of a nilpotent derivation must be of the form 2 n {2^n} . Combining these two results, we show that for a general semiprime ring with no torsion condition, the nilpotency of a nilpotent derivation is either odd or a power of 2.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference2 articles.

1. Nilpotency of derivations;Chung, L. O.;Canad. Math. Bull.,1983

2. Nilpotency of derivatives on an ideal;Chung, L. O.;Proc. Amer. Math. Soc.,1984

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimal polynomials of algebraic derivations and automorphisms;Linear Algebra and its Applications;2007-06

2. Nilpotent derivations;Journal of Algebra;2005-05

3. Differential and difference algebra;Journal of Soviet Mathematics;1989-04

4. Nil and strongly nil derivations;Communications in Algebra;1987-01

5. (S)-derivations algebriques sur les corps gauches et sur les anneaux premiers;Communications in Algebra;1986-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3