Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface

Author:

Thomassen Carsten

Abstract

We describe all regular tilings of the torus and the Klein bottle. We apply this to describe, for each orientable (respectively nonorientable) surface S S , all (but finitely many) vertex-transitive graphs which can be drawn on S S but not on any surface of smaller genus (respectively crosscap number). In particular, we prove the conjecture of Babai that, for each g 3 g \geqslant 3 , there are only finitely many vertex-transitive graphs of genus g g . In fact, they all have order > 10 10 g > {10^{10}}g . The weaker conjecture for Cayley graphs was made by Gross and Tucker and extends Hurwitz’ theorem that, for each g 2 g \geqslant 2 , there are only finitely many groups that act on the surface of genus g g . We also derive a nonorientable version of Hurwitz’ theorem.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. Construction and enumeration of regular maps on the torus;Altshuler, Amos;Discrete Math.,1973

2. Additivity of the genus of a graph;Battle, Joseph;Bull. Amer. Math. Soc.,1962

3. Transitive planar graphs;Fleischner, Herbert;Math. Slovaca,1979

4. Wiley-Interscience Series in Discrete Mathematics and Optimization;Gross, Jonathan L.,1987

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large automorphism groups of bordered tori;Journal of Pure and Applied Algebra;2024-12

2. Automorphisms and isomorphisms of maps in linear time;ACM Transactions on Algorithms;2024-08-07

3. Doubly semi-equivelar maps on the plane and the torus;AKCE International Journal of Graphs and Combinatorics;2022-09-02

4. An Infinite Family of Linklessly Embeddable Tutte-4-Connected Graphs;Graphs and Combinatorics;2022-05-19

5. Cubic vertex-transitive graphs of girth six;Discrete Mathematics;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3