The Stefan problem with small surface tension

Author:

Friedman Avner,Reitich Fernando

Abstract

The Stefan problem with small surface tension ε \varepsilon is considered. Assuming that the classical Stefan problem (with ε = 0 \varepsilon = 0 ) has a smooth free boundary Γ \Gamma , we denote the temperature of the solution by θ 0 {\theta _0} and consider an approximate solution θ 0 + ε u {\theta _0} + \varepsilon u for the case where ε 0 \varepsilon \ne 0 , ε \varepsilon small. We first establish the existence and uniqueness of u u , and then investigate the effect of u u on the free boundary Γ \Gamma . It is shown that small surface tension affects the free boundary Γ \Gamma radically differently in the two-phase problem than in the one-phase problem.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. An analysis of a phase field model of a free boundary;Caginalp, Gunduz;Arch. Rational Mech. Anal.,1986

2. B. Chalmers, Principles of solidification, Krieger, Huntington, N.Y., 1977.

3. Évolution d’une interface par capillarité et diffusion de volume. I. Existence locale en temps;Duchon, Jean;Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire,1984

4. Remarks on the maximum principle for parabolic equations and its applications;Friedman, Avner;Pacific J. Math.,1958

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stefan problem with surface tension: global existence of physical solutions under radial symmetry;Probability Theory and Related Fields;2023-05-08

2. Maximal regularity for evolution equations and application to the Stefan problem;Asian-European Journal of Mathematics;2022-05-21

3. Quasi-Analytical Solutions and Methods;The Classical Stefan Problem;2018

4. Stefan Problem With Supercooling: Classical Formulation and Analysis;The Classical Stefan Problem;2018

5. Bibliography;The Classical Stefan Problem;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3