Mathias forcing which does not add dominating reals

Author:

Canjar R. Michael

Abstract

Assume that there is no dominating family of reals of cardinality > c > c . We show that there then exists an ultrafilter on the set of natural numbers such that its associated Mathias forcing does not adjoin any real which dominates all ground model reals. Such ultrafilters are necessarily P P -points with no Q Q -points below them in the Rudin-Keisler order.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. Near coherence of filters. I. Cofinal equivalence of models of arithmetic;Blass, Andreas;Notre Dame J. Formal Logic,1986

2. Near coherence of filters. III. A simplified consistency proof;Blass, Andreas;Notre Dame J. Formal Logic,1989

3. \bysame, Ultrafilters with small generating sets, 73 (1988), 1-79.

4. Countable ultraproducts without CH;Canjar, Michael;Ann. Pure Appl. Logic,1988

5. Die Grundlehren der mathematischen Wissenschaften, Band 211;Comfort, W. W.,1974

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Splitting positive sets;Science China Mathematics;2023-06-13

2. Mathias and silver forcing parametrized by density;Archive for Mathematical Logic;2023-05-18

3. The ultrafilter and almost disjointness numbers;Advances in Mathematics;2021-08

4. Indestructibility of ideals and MAD families;Annals of Pure and Applied Logic;2021-05

5. The density zero ideal and the splitting number;Annals of Pure and Applied Logic;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3