Rings with projective socle

Author:

Nicholson W. K.,Watters J. F.

Abstract

The class of rings with projective left socle is shown to be closed under the formation of polynomial and power series extensions, direct products, and matrix rings. It is proved that a ring R R has a projective left socle if and only if the right annihilator of every maximal left ideal is of the form f R fR , where f f is an idempotent in R R . This result is used to establish the closure properties above except for matrix rings. To prove this we characterise the rings of the title by the property of having a faithful module with projective socle, and show that if R R has such a module, then so does M n ( R ) {M_n}\left ( R \right ) . In fact we obtain more than Morita invariance. Also an example is given to show that e R e eRe , for an idempotent e e in a ring R R with projective socle, need not have projective socle. The same example shows that the notion is not left-right symmetric.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. Rings of quotients and Morita contexts;Amitsur, S. A.;J. Algebra,1971

2. A note on extensions of Baer and P.P.-rings;Armendariz, Efraim P.;J. Austral. Math. Soc.,1974

3. Some properties of 𝑇𝑇𝐹-classes;Azumaya, Gorô,1973

4. On \cal𝐶-semisimple rings. A study of the socle of a ring;Baccella, Giuseppe;Comm. Algebra,1980

5. Generalized 𝑉-rings and von Neumann regular rings;Baccella, Giuseppe;Rend. Sem. Mat. Univ. Padova,1984

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Purities Relative to Minimal Right Ideals;Lobachevskii Journal of Mathematics;2023-07

2. HOMOLOGICAL OBJECTS OF MIN-PURE EXACT SEQUENCES;Hacettepe Journal of Mathematics and Statistics;2023-04-25

3. Morita contexts and the projective socle property;International Journal of Algebra and Computation;2022-09-16

4. On subprojectivity domains of g-semiartinian modules;Journal of Algebra and Its Applications;2020-07-04

5. On a conjecture posed by Benhissi and Koja;Communications in Algebra;2020-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3