Interior and boundary regularity of solutions to a plasma type equation

Author:

Kwong Ying C.

Abstract

In this paper, we will consider a plasma type equation with homogeneous boundary condition and nonnegative initial data such that there is a finite extinction T {T^*} . We will show that the solution is a positive classical solution in the interior of the parabolic cylinder and it decays to zero at the boundary at a certain explicit rate.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference11 articles.

1. The continuous dependence on 𝜑 of solutions of 𝑢_{𝑡}-Δ𝜑(𝑢)=0;Bénilan, Philippe;Indiana Univ. Math. J.,1981

2. Stability of the separable solution for fast diffusion;Berryman, James G.;Arch. Rational Mech. Anal.,1980

3. Finite extinction time for a class of nonlinear parabolic equations;Díaz, Gregorio;Comm. Partial Differential Equations,1979

4. Continuity of weak solutions to a general porous medium equation;DiBenedetto, Emmanuele;Indiana Univ. Math. J.,1983

5. Ying C. Kwong, The asymptotic behavior of the plasma equation with homogeneous Dirichlet boundary condition and non-negative initial data (in preparation).

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal regularity and fine asymptotics for the porous medium equation in bounded domains;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-03-26

2. The Cauchy–Dirichlet problem for the fast diffusion equation on bounded domains;Nonlinear Analysis;2024-02

3. Local regularity for nonlinear elliptic and parabolic equations with anisotropic weights;Proceedings of the Edinburgh Mathematical Society;2023-04-28

4. A finite time extinction profile and optimal decay for a fast diffusive doubly nonlinear equation;Nonlinear Differential Equations and Applications NoDEA;2023-04-11

5. Finite extinction for a doubly nonlinear parabolic equation of fast diffusion type;Arab Journal of Mathematical Sciences;2021-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3