Positivity, sums of squares and the multi-dimensional moment problem

Author:

Kuhlmann S.,Marshall M.

Abstract

Let K K be the basic closed semi-algebraic set in R n \mathbb {R}^n defined by some finite set of polynomials S S and T T , the preordering generated by S S . For K K compact, f f a polynomial in n n variables nonnegative on K K and real ϵ > 0 \epsilon >0 , we have that f + ϵ T f+\epsilon \in T [15]. In particular, the K K -Moment Problem has a positive solution. In the present paper, we study the problem when K K is not compact. For n = 1 n=1 , we show that the K K -Moment Problem has a positive solution if and only if S S is the natural description of K K (see Section 1). For n 2 n\ge 2 , we show that the K K -Moment Problem fails if K K contains a cone of dimension 2. On the other hand, we show that if K K is a cylinder with compact base, then the following property holds: \[ ( ) f R [ X ] , f 0  on  K q T  such that   real  ϵ > 0 , f + ϵ q T . (\ddagger )\quad \quad \forall f\in \mathbb {R}[X], f\ge 0 \text { on } K\Rightarrow \exists q\in T \text { such that }\forall \text { real } \epsilon >0, f+\epsilon q\in T.\quad \] This property is strictly weaker than the one given in [15], but in turn it implies a positive solution to the K K -Moment Problem. Using results of [9], we provide many (noncompact) examples in hypersurfaces for which ( \ddagger ) holds. Finally, we provide a list of 8 open problems.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Associativity and commutativity of partially ordered rings;Journal of Algebra;2024-12

2. Rational certificates of non-negativity on semialgebraic subsets of cylinders;Journal of Pure and Applied Algebra;2024-06

3. Degree Bounds for Putinar’s Positivstellensatz on the Hypercube;SIAM Journal on Applied Algebra and Geometry;2024-01-22

4. Positivstellensätze for semirings;Mathematische Annalen;2023-07-10

5. The strong truncated Hamburger moment problem with and without gaps;Journal of Mathematical Analysis and Applications;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3