Extensions for finite Chevalley groups II

Author:

Bendel Christopher,Nakano Daniel,Pillen Cornelius

Abstract

Let G G be a semisimple simply connected algebraic group defined and split over the field F p {\mathbb {F}}_p with p p elements, let G ( F q ) G(\mathbb {F}_{q}) be the finite Chevalley group consisting of the F q {\mathbb {F}}_{q} -rational points of G G where q = p r q = p^r , and let G r G_{r} be the r r th Frobenius kernel. The purpose of this paper is to relate extensions between modules in Mod ( G ( F q ) ) \text {Mod}(G(\mathbb {F}_{q})) and Mod ( G r ) \text {Mod}(G_{r}) with extensions between modules in Mod ( G ) \text {Mod}(G) . Among the results obtained are the following: for r > 2 r >2 and p 3 ( h 1 ) p\geq 3(h-1) , the G ( F q ) G(\mathbb {F}_{q}) -extensions between two simple G ( F q ) G(\mathbb {F}_{q}) -modules are isomorphic to the G G -extensions between two simple p r p^r -restricted G G -modules with suitably “twisted" highest weights. For p 3 ( h 1 ) p \geq 3(h-1) , we provide a complete characterization of H 1 ( G ( F q ) , H 0 ( λ ) ) \text {H}^{1}(G(\mathbb {F}_{q}),H^{0}(\lambda )) where H 0 ( λ ) = ind B G   λ H^{0}(\lambda )=\text {ind}_{B}^{G}\ \lambda and λ \lambda is p r p^r -restricted. Furthermore, for p 3 ( h 1 ) p \geq 3(h-1) , necessary and sufficient bounds on the size of the highest weight of a G G -module V V are given to insure that the restriction map H 1 ( G , V ) H 1 ( G ( F q ) , V ) \operatorname {H}^{1}(G,V)\rightarrow \operatorname {H}^{1}(G(\mathbb {F}_{q}),V) is an isomorphism. Finally, it is shown that the extensions between two simple p r p^r -restricted G G -modules coincide in all three categories provided the highest weights are “close" together.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference23 articles.

1. Extensions of modules for algebraic groups;Andersen, Henning Haahr;Amer. J. Math.,1984

2. Extensions of simple modules for finite Chevalley groups;Andersen, Henning Haahr;J. Algebra,1987

3. Cohomology of induced representations for algebraic groups;Andersen, Henning Haahr;Math. Ann.,1984

4. The projective indecomposable modules of 𝑆𝐿(2,𝑝ⁿ);Andersen, Henning Haahr;Proc. London Math. Soc. (3),1983

5. On comparing the cohomology of algebraic groups, finite Chevalley groups and Frobenius kernels;Bendel, Christopher P.;J. Pure Appl. Algebra,2001

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Jacobson-Morozov theorem and complete reducibility of Lie subalgebras;Proceedings of the London Mathematical Society;2017-09-29

2. On the existence of mock injective modules for algebraic groups;Bulletin of the London Mathematical Society;2017-07-31

3. Extensions for finite Chevalley groups III: Rational and generic cohomology;Advances in Mathematics;2014-09

4. On the third cohomology of algebraic groups of rank two in positive characteristic;Sbornik: Mathematics;2014-03-31

5. Shifted generic cohomology;Compositio Mathematica;2013-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3