Approximating topological metrics by Riemannian metrics

Author:

Ferry Steven C.,Okun Boris L.

Abstract

We study the relation between (topological) inner metrics and Riemannian metrics on smoothable manifolds. We show that inner metrics on smoothable manifolds can be approximated by Riemannian metrics. More generally, if f : M X f:M \to X is a continuous surjection from a smooth manifold to a compact metric space with f 1 ( x ) {f^{ - 1}}(x) connected for every x X x \in X , then there is a metric d on X and a sequence of Riemannian metrics { ψ i } \{ {\psi _i}\} on M so that ( M , ψ i ) (M,{\psi _i}) converges to (X, d) in Gromov-Hausdorff space. This is used to obtain a (fixed) contractibility function ρ \rho and a sequence of Riemannian manifolds with ρ \rho as contractibility function so that lim ( M , ψ i ) \lim (M,{\psi _i}) is infinite dimensional. Using results of Dranishnikov and Ferry, this also gives examples of nonhomeomorphic manifolds M and N and a contractibility function ρ \rho so that for every ε > 0 \varepsilon > 0 there are Riemannian metrics ϕ ε {\phi _\varepsilon } and ψ ε {\psi _\varepsilon } on M and N so that ( M , ϕ ε ) (M,{\phi _\varepsilon }) and ( N , ψ ε ) (N,{\psi _\varepsilon }) have contractibility function ρ \rho and d G H ( ( M , ϕ ε ) , ( N , ψ ε ) ) > ε {d_{GH}}((M,{\phi _\varepsilon }),(N,{\psi _\varepsilon })) > \varepsilon .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. Characterizing 𝑘-dimensional universal Menger compacta;Bestvina, Mladen;Mem. Amer. Math. Soc.,1988

2. Partitioning continuous curves;Bing, R. H.;Bull. Amer. Math. Soc.,1952

3. Approximating compact inner metric spaces by surfaces;Cassorla, Mark;Indiana Univ. Math. J.,1992

4. On resolutions of 𝐿𝐶ⁿ-compacta;Dranishnikov, A. N.,1987

5. A. N. Dranishnikov and S. C. Ferry, Cell-like images of topological manifolds and limits of manifolds in Gromov-Hausdorff space, preprint.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Limits of Manifolds in the Gromov–Hausdorff Metric Space;Mediterranean Journal of Mathematics;2022-12-28

2. Sweepouts of closed Riemannian manifolds;Geometric and Functional Analysis;2021-06

3. A Counter-Example to Hausmann’s Conjecture;Foundations of Computational Mathematics;2021-05-04

4. A hardness of approximation result in metric geometry;Selecta Mathematica;2020-07-20

5. Weak convergence of currents and cancellation;Calculus of Variations and Partial Differential Equations;2009-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3