Isometry groups of Riemannian solvmanifolds

Author:

Gordon Carolyn S.,Wilson Edward N.

Abstract

A simply connected solvable Lie group R R together with a left-invariant Riemannian metric g g is called a (simply connected) Riemannian solvmanifold. Two Riemannian solvmanifolds ( R , g ) (R,\,g) and ( R , g ) (R’ ,\,g’ ) may be isometric even when R R and R R’ are not isomorphic. This article addresses the problems of (i) finding the "nicest" realization ( R , g ) (R,\,g) of a given solvmanifold, (ii) describing the embedding of R R in the full isometry group I ( R , g ) I(R,\,g) , and (iii) testing whether two given solvmanifolds are isometric. The paper also classifies all connected transitive groups of isometries of symmetric spaces of noncompact type and partially describes the transitive subgroups of I ( R , g ) I(R,\,g) for arbitrary solvmanifolds ( R , g ) (R,\,g) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. The conjugacy of polar decompositions of Lie groups;Alekseevskiĭ, D. V.;Mat. Sb. (N.S.),1971

2. Homogeneous Riemannian spaces of negative curvature;Alekseevskiĭ, D. V.;Mat. Sb. (N.S.),1975

3. Homogeneous manifolds with negative curvature. I;Azencott, Robert;Trans. Amer. Math. Soc.,1976

4. Homogeneous manifolds with negative curvature. II;Azencott, Robert;Mem. Amer. Math. Soc.,1976

5. E. D. Deloff, Naturally reductive metrics and metrics with volume preserving geodesic symmetries on 𝑁𝐶 algebras, Thesis, Rutgers Univ., New Brunswick, N. J., 1979.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Moduli Spaces of (Co)Closed G2-Structures on Nilmanifolds;The Quarterly Journal of Mathematics;2024-07-24

2. Homogeneous Geodesics of $4$-dimensional Solvable Lie Groups;International Electronic Journal of Geometry;2024-04-23

3. The mean curvature flow on solvmanifolds;Boletín de la Sociedad Matemática Mexicana;2024-04-11

4. Left-invariant distributions diffeomorphic to flat distributions;Geometriae Dedicata;2024-03-13

5. Geometry of cotangent bundle of Heisenberg group;Differential Geometry and its Applications;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3