Infinite rank Butler groups

Author:

Dugas Manfred,Rangaswamy K. M.

Abstract

A torsion-free abelian group G G is said to be a Butler group if Bext ( G , T ) \operatorname {Bext} (G,\,T) for all torsion groups T T . It is shown that Butler groups of finite rank satisfy what we call the torsion extension property (T.E.P.). A crucial result is that a countable Butler group G G satisfies the T.E.P. over a pure subgroup H H if and only if H H is decent in G G in the sense of Albrecht and Hill. A subclass of the Butler groups are the so-called B 2 {B_2} -groups. An important question left open by Arnold, Bican, Salce, and others is whether every Butler group is a B 2 {B_2} -group. We show under ( V = L ) (V = L) that this is indeed the case for Butler groups of rank 1 {\aleph _1} . On the other hand it is shown that, under ZFC, it is undecidable whether a group B B for which Bext ( B , T ) = 0 \operatorname {Bext} (B,\,T) = 0 for all countable torsion groups T T is indeed a B 2 {B_2} -group.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. U. Albrecht and P. Hill, Butler groups of infinite rank and Axiom 3, Preprint.

2. Pure subgroups of finite rank completely decomposable groups;Arnold, David M.,1981

3. Pure subgroups of finite rank completely decomposable groups. II;Arnold, D.,1983

4. Notes on Butler groups and balanced extensions;Arnold, David M.;Boll. Un. Mat. Ital. A (6),1986

5. Abelian groups without elements of finite order;Baer, Reinhold;Duke Math. J.,1937

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Torsion-free modules of finite rank over a discrete valuation ring;Journal of Algebra;2004-02

2. Bibliography;North-Holland Mathematical Library;2002

3. Dual Groups;North-Holland Mathematical Library;2002

4. Almost Free Modules Revisited;North-Holland Mathematical Library;2002

5. More Set Theory;North-Holland Mathematical Library;2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3