A random graph with a subcritical number of edges

Author:

Pittel B.

Abstract

A random graph G n ( prob ( edge ) = p ) ( p = c / n , 0 > c > 1 ) {G_n}(\operatorname {prob} (\operatorname {edge} ) = p)\;(p = c/n,\,0 > c > 1) on n n labelled vertices is studied. There are obtained limiting distributions of the following characteristics: the lengths of the longest cycle and the longest path, the total size of unicyclic components, the number of cyclic vertices, the number of distinct component sizes, and the middle terms of the component-size order sequence. For instance, it is proved that, with probability approaching ( 1 c ) 1 / 2 exp ( j = 1 l c j / 2 j ) {(1 - c)^{1/2}}\exp (\sum \nolimits _{j = 1}^l {{c^j}/2j)} as n n \to \infty , the random graph does not have a cycle of length > l > l . Another result is that, with probability approaching 1 1 , the size of the ν \nu th largest component either equals an integer closest to a log ( b n / ν log 5 / 2 n ) a\;\log (bn/\nu \,{\log ^{5/2}}n) , a = a ( c ) a = a(c) , b = b ( c ) b = b(c) , or is one less than this integer, provided that ν \nu \to \infty and ν = o ( n / log 5 / 2 n ) \nu = o(n/{\log ^{5/2}}n) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference23 articles.

1. The longest path in a random graph;Ajtai, Miklós;Combinatorica,1981

2. Poisson convergence and random graphs;Barbour, A. D.;Math. Proc. Cambridge Philos. Soc.,1982

3. Mathematics in Science and Engineering, Vol. 72;Berge, C.,1971

4. Long paths in sparse random graphs;Bollobás, Béla;Combinatorica,1982

5. Long cycles in sparse random graphs;Bollobás, B.,1984

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Limit theorems for topological invariants of the dynamic multi-parameter simplicial complex;Stochastic Processes and their Applications;2021-08

2. Longest Paths in Random Hypergraphs;SIAM Journal on Discrete Mathematics;2021-01

3. Expected Maximum Block Size in Critical Random Graphs;Combinatorics, Probability and Computing;2019-07

4. On the cycle space of a random graph;Random Structures & Algorithms;2018-07-20

5. Understanding chicken walks on n × n grid: Hamiltonian paths, discrete dynamics, and rectifiable paths;Mathematical Methods in the Applied Sciences;2014-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3