The continuation theory for Morse decompositions and connection matrices

Author:

Franzosa Robert D.

Abstract

The continuation theory for ( > > -ordered) Morse decompositions and the indices defined on them—the homology index braid and the connection matrices—is established. The equivalence between > > -ordered Morse decompositions and > > -consistent attractor filtrations is displayed. The spaces of ( > > -ordered) Morse decompositions for a product parametrization of a local flow are introduced, and the local continuation of ( > > -ordered) Morse decompositions is obtained via the above-described equivalence and the local continuation of attractors. The homology index braid and the connection matrices of an admissible ordering of a Morse decomposition are shown to be invariant on path components of the corresponding space of > > -ordered Morse decompositions. This invariance is used to prove that the collection of connection matrices of a Morse decomposition is upper semicontinuous over the space of Morse decompositions (and over the parameter space) under local continuation.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. CBMS Regional Conference Series in Mathematics;Conley, Charles,1978

2. Morse-type index theory for flows and periodic solutions for Hamiltonian equations;Conley, Charles;Comm. Pure Appl. Math.,1984

3. R. Franzosa, Index filtrations and connection matrices for partially ordered Morse decompositions, Ph. D. dissertation, Univ. of Wisconsin-Madison, 1984.

4. Index filtrations and the homology index braid for partially ordered Morse decompositions;Franzosa, Robert;Trans. Amer. Math. Soc.,1986

5. The connection matrix theory for Morse decompositions;Franzosa, Robert D.;Trans. Amer. Math. Soc.,1989

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continuation sheaves in dynamics: Sheaf cohomology and bifurcation;Journal of Differential Equations;2023-09

2. Decomposing dynamics via components of rotation sets;Journal of Differential Equations;2023-08

3. A Heteroclinic Bifurcation in a Motion of Pendulum: Numerical-Topological Approach;International Journal of Applied and Computational Mathematics;2022-04-16

4. Structure of the attractor for a non-local Chafee-Infante problem;Journal of Mathematical Analysis and Applications;2022-03

5. A computational framework for connection matrix theory;Journal of Applied and Computational Topology;2021-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3