The McMullen domain: Rings around the boundary

Author:

Devaney Robert,Marotta Sebastian

Abstract

In this paper we show that there are infinitely many rings S k , k 1 {\mathcal S}^k, k \geq 1 , around the McMullen domain in the parameter plane for the family of complex rational maps of the form z n + λ / z n z^n + \lambda /z^n where λ C \lambda \in \mathbb {C} and n 3 n \geq 3 . These rings converge to the boundary of the McMullen domain as k k \rightarrow \infty . The rings S k {\mathcal S}^k contain ( n 2 ) n k 1 + 1 (n-2)n^{k-1} + 1 parameter values that lie at the center of Sierpinski holes. That is, these parameters lie at the center of an open set in the parameter plane in which all of the corresponding maps have Julia sets that are Sierpinski curves. The rings also contain the same number of superstable parameter values, i.e., parameter values for which one of the critical points is periodic of period either k k or 2 k 2k .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. Sierpinski-curve Julia sets and singular perturbations of complex polynomials;Blanchard, Paul;Ergodic Theory Dynam. Systems,2005

2. Baby Mandelbrot sets adorned with halos in families of rational maps;Devaney, Robert L.,2006

3. Structure of the McMullen domain in the parameter planes for rational maps;Devaney, Robert L.;Fund. Math.,2005

4. Devaney, R. L., The McMullen Domain: Satellite Mandelbrot Sets and Sierpinski Holes. To appear.

5. Devaney, R. L. and Look, D. M., A Criterion for Sierpinski Curve Julia Sets. To appear in Topology Proceedings.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GENERALIZED RINGS AROUND SIERPIŃSKI HOLES;Fractals;2024-01

2. Escape components of McMullen maps;Ergodic Theory and Dynamical Systems;2022-11-28

3. RINGS AROUND SIERPINSKI HOLES;Fractals;2022-06-23

4. On hyperbolic rational maps with finitely connected Fatou sets;Journal of the London Mathematical Society;2022-01

5. Mandelpinski Necklaces in the Parameter Planes of Rational Maps;Topological Dynamics and Topological Data Analysis;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3