Some new results in multiplicative and additive Ramsey theory

Author:

Beiglböck Mathias,Bergelson Vitaly,Hindman Neil,Strauss Dona

Abstract

There are several notions of largeness that make sense in any semigroup, and others such as the various kinds of density that make sense in sufficiently well-behaved semigroups including ( N , + ) (\mathbb {N},+) and ( N , ) (\mathbb {N},\cdot ) . It was recently shown that sets in N \mathbb {N} which are multiplicatively large must contain arbitrarily large geoarithmetic progressions, that is, sets of the form { r j ( a + i d ) : i , j { 0 , 1 , , k } } \big \{r^j(a\!+\!id)\!:i,j\in \{0,1,\dotsc ,k\}\big \} , as well as sets of the form { b ( a + i d ) j : i , j { 0 , 1 , , k } } \big \{b(a+id)^j:i,j\in \{0,1,\dotsc ,k\}\big \} . Consequently, given a finite partition of N \mathbb {N} , one cell must contain such configurations. In the partition case we show that we can get substantially stronger conclusions. We establish some combined additive and multiplicative Ramsey theoretic consequences of known algebraic results in the semigroups ( β N , + ) (\beta \mathbb {N},+) and ( β N , ) (\beta \mathbb {N},\cdot ) , derive some new algebraic results, and derive consequences of them involving geoarithmetic progressions. For example, we show that given any finite partition of N \mathbb {N} there must be, for each k k , sets of the form { b ( a + i d ) j : i , j { 0 , 1 , , k } } \big \{b(a+id)^j:i,j\in \{0,1,\dotsc ,k\}\big \} together with d d , the arithmetic progression { a + i d : i { 0 , 1 , , k } } \big \{a+id:i\in \{0,1,\dotsc ,k\}\big \} , and the geometric progression { b d j : j { 0 , 1 , , k } } \big \{bd^j:j\in \{0,1,\dotsc ,k\}\big \} in one cell of the partition. More generally, we show that, if S S is a commutative semigroup and F {\mathcal F} a partition regular family of finite subsets of S S , then for any finite partition of S S and any k N k\in \mathbb {N} , there exist b , r S b,r\in S and F F F\in {\mathcal F} such that r F { b ( r x ) j : x F , j { 0 , 1 , 2 , , k } } rF\cup \{b(rx)^j:x \in F,j\in \{0,1,2,\ldots ,k\}\} is contained in a cell of the partition. Also, we show that for certain partition regular families F {\mathcal F} and G {\mathcal G} of subsets of N \mathbb {N} , given any finite partition of N \mathbb {N} some cell contains structures of the form B C B C B \cup C \cup B\cdot C for some B F , C G B\in {\mathcal F}, C\in {\mathcal G} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference22 articles.

1. Multiplicatively large sets and ergodic Ramsey theory;Bergelson, Vitaly;Israel J. Math.,2005

2. Partition theorems for spaces of variable words;Bergelson, Vitaly;Proc. London Math. Soc. (3),1994

3. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems;Bergelson, V.;J. Amer. Math. Soc.,1996

4. Ramsey theoretic consequences of some new results about algebra in the Stone-Čech compactification;Carlson, Timothy J.;Integers,2005

5. Partitionen und lineare Gleichungssysteme;Deuber, Walter;Math. Z.,1973

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polynomial extension of some symmetric partition regular structures;Bulletin des Sciences Mathématiques;2024-05

2. Multiple ergodic averages along functions from a Hardy field: Convergence, recurrence and combinatorial applications;Advances in Mathematics;2024-05

3. Algebraic products of tensor products;Semigroup Forum;2021-08-19

4. Revelation of a High-order Arithmetic Sequence with the Same First Term and Common Difference;Proceedings of the 2019 4th International Conference on Big Data and Computing - ICBDC 2019;2019

5. A history of central sets;Ergodic Theory and Dynamical Systems;2018-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3