Extension d’une valuation

Author:

Vaquié Michel

Abstract

We want to determine all the extensions of a valuation ν \nu of a field K K to a cyclic extension L L of K K , i.e. L = K ( x ) L=K(x) is the field of rational functions of x x or L = K ( θ ) L=K(\theta ) is the finite separable extension generated by a root θ \theta of an irreducible polynomial G ( x ) G(x) . In two articles from 1936, Saunders MacLane has introduced the notions of key polynomial and of augmented valuation for a given valuation μ \mu of K [ x ] K[x] , and has shown how we can recover any extension to L L of a discrete rank one valuation ν \nu of K K by a countable sequence of augmented valuations ( μ i ) i I \bigl (\mu _i\bigr ) _{i \in I} , with I N I \subset \mathbb N . The valuation μ i \mu _i is defined by induction from the valuation μ i 1 \mu _{i-1} , from a key polynomial ϕ i \phi _i and from the value γ i = μ ( ϕ i ) \gamma _i = \mu ( \phi _i ) . In this article we study some properties of the augmented valuations and we generalize the results of MacLane to the case of any valuation ν \nu of K K . For this we need to introduce simple admissible families of augmented valuations A = ( μ α ) α A {\mathcal A} = \bigl ( \mu _{\alpha } \bigr ) _{\alpha \in A} , where A A is not necessarily a countable set, and to define a limit key polynomial and limit augmented valuation for such families. Then, any extension μ \mu to L L of a valuation ν \nu on K K is again a limit of a family of augmented valuations. We also get a “factorization” theorem which gives a description of the values ( μ α ( f ) ) ( \mu _{\alpha } (f)) for any polynomial f f in K [ x ] K[x] .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II;Abhyankar, Shreeram S.;J. Reine Angew. Math.,1973

2. All valuations on 𝐾(𝑋);Alexandru, V.;J. Math. Kyoto Univ.,1990

3. Maximal fields with valuations;Kaplansky, Irving;Duke Math. J.,1942

4. Rank 2 valuations of 𝐾(𝑥);Khanduja, Sudesh K.;Mathematika,1990

5. Valuation theoretic and model theoretic aspects of local uniformization;Kuhlmann, Franz-Viktor,2000

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Key polynomials and preminimal pairs;St. Petersburg Mathematical Journal;2024-07-30

2. Parametrizations of subsets of the space of valuations;Mathematische Zeitschrift;2024-07-11

3. An invariant of valuation transcendental extensions and its connection with key polynomials;Journal of Algebra;2024-07

4. Polynomial Factorization Over Henselian Fields;Foundations of Computational Mathematics;2024-02-21

5. The defect formula;Advances in Mathematics;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3