The distance function from the boundary in a Minkowski space

Author:

Crasta Graziano,Malusa Annalisa

Abstract

Let the space R n \mathbb R^n be endowed with a Minkowski structure M M (that is, M : R n [ 0 , + ) M\colon \mathbb R^n \to [0,+\infty ) is the gauge function of a compact convex set having the origin as an interior point, and with boundary of class C 2 C^2 ), and let d M ( x , y ) d^M(x,y) be the (asymmetric) distance associated to M M . Given an open domain Ω R n \Omega \subset \mathbb R^n of class C 2 C^2 , let d Ω ( x ) := inf { d M ( x , y ) ;   y Ω } d_{\Omega }(x) := \inf \{d^M(x,y);\ y\in \partial \Omega \} be the Minkowski distance of a point x Ω x\in \Omega from the boundary of Ω \Omega . We prove that a suitable extension of d Ω d_{\Omega } to R n \mathbb R^n (which plays the rôle of a signed Minkowski distance to Ω \partial \Omega ) is of class C 2 C^2 in a tubular neighborhood of Ω \partial \Omega , and that d Ω d_{\Omega } is of class C 2 C^2 outside the cut locus of Ω \partial \Omega (that is, the closure of the set of points of nondifferentiability of d Ω d_{\Omega } in Ω \Omega ). In addition, we prove that the cut locus of Ω \partial \Omega has Lebesgue measure zero, and that Ω \Omega can be decomposed, up to this set of vanishing measure, into geodesics starting from Ω \partial \Omega and going into Ω \Omega along the normal direction (with respect to the Minkowski distance). We compute explicitly the Jacobian determinant of the change of variables that associates to every point x Ω x\in \Omega outside the cut locus the pair ( p ( x ) , d Ω ( x ) ) (p(x), d_{\Omega }(x)) , where p ( x ) p(x) denotes the (unique) projection of x x on Ω \partial \Omega , and we apply these techniques to the analysis of PDEs of Monge–Kantorovich type arising from problems in optimal transportation theory and shape optimization.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the first Robin eigenvalue of the Finsler p-Laplace operator as p → 1;Journal of Mathematical Analysis and Applications;2024-12

2. On aspects of the normalized Infinity Laplacian on Finsler manifolds;Nonlinear Analysis;2024-09

3. Delta‐convex structure of the singular set of distance functions;Communications on Pure and Applied Mathematics;2024-03-07

4. Sharp estimates for the first Robin eigenvalue of nonlinear elliptic operators;Journal of Differential Equations;2024-03

5. A Remark on Oka’s Lemma and a Geometric Property of Pseudoconvex Domains;The Journal of Geometric Analysis;2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3