Transfer maps in Hochschild (co)homology and applications to stable and derived invariants and to the Auslander–Reiten conjecture

Author:

Koenig Steffen,Liu Yuming,Zhou Guodong

Abstract

Derived equivalences and stable equivalences of Morita type, and new (candidate) invariants thereof, between symmetric algebras will be investigated, using transfer maps as a tool. Close relationships will be established between the new invariants and the validity of the Auslander–Reiten conjecture, which states the invariance of the number of non-projective simple modules under stable equivalence. More precisely, the validity of this conjecture for a given pair of algebras, which are stably equivalent of Morita type, will be characterized in terms of data refining Hochschild homology (via Külshammer ideals) being invariant and also in terms of cyclic homology being invariant. Thus, validity of the Auslander–Reiten conjecture implies a whole set of ring theoretic and cohomological data to be invariant under stable equivalence of Morita type, and hence also under derived equivalence. We shall also prove that the Batalin–Vilkovisky algebra structure of Hochschild cohomology for symmetric algebras is preserved by derived equivalence. The main tools to be developed and used are transfer maps and their properties, in particular a crucial compatibility condition between transfer maps in Hochschild homology and Hochschild cohomology via the duality between them.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference37 articles.

1. Graduate Texts in Mathematics, Vol. 13;Anderson, Frank W.,1974

2. Cambridge Studies in Advanced Mathematics;Auslander, Maurice,1995

3. Generalized Reynolds ideals for non-symmetric algebras;Bessenrodt, Christine;J. Algebra,2007

4. S. Bouc, Bimodules, trace généralisée, et transfers en homologie de Hochschild. Preprint, 1997. Available on http://people.math.jussieu.fr/\phantom{𝑥}̃bouc/

5. Cartan invariants and central ideals of group algebras;Breuer, Thomas;J. Algebra,2006

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3