Criteria for irrationality of Euler’s constant

Author:

Sondow Jonathan

Abstract

By modifying Beukers’ proof of Apéry’s theorem that ζ ( 3 ) \zeta (3) is irrational, we derive criteria for irrationality of Euler’s constant, γ \gamma . For n > 0 n>0 , we define a double integral I n I_n and a positive integer S n S_n , and prove that with d n = LCM ( 1 , , n ) d_n=\operatorname {LCM}(1,\dotsc ,n) the following are equivalent: 1. The fractional part of log S n \log S_n is given by { log S n } = d 2 n I n \{\log S_n\}=d_{2n}I_n for some n n . 2. The formula holds for all sufficiently large n n . 3. Euler’s constant is a rational number. A corollary is that if { log S n } 2 n \{\log S_n\}\ge 2^{-n} infinitely often, then γ \gamma is irrational. Indeed, if the inequality holds for a given n n (we present numerical evidence for 1 n 2500 ) 1\le n\le 2500) and γ \gamma is rational, then its denominator does not divide d 2 n ( 2 n n ) d_{2n}\binom {2n}{n} . We prove a new combinatorial identity in order to show that a certain linear form in logarithms is in fact log S n \log S_n . A by-product is a rapidly converging asymptotic formula for γ \gamma , used by P. Sebah to compute γ \gamma correct to 18063 decimals.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. R. Apéry, Irrationalité de 𝜁(2) et 𝜁(3), Astérisque 61 (1979), 12–14.

2. A note on the irrationality of 𝜁(2) and 𝜁(3);Beukers, F.;Bull. London Math. Soc.,1979

3. On non-linear partial differential equations of the hyperbolic type;Sundaram, S. Minakshi;Proc. Indian Acad. Sci., Sect. A.,1939

4. Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs;Ball, Keith;Invent. Math.,2001

5. Similarities in irrationality proofs for 𝜋, ln2, 𝜁(2), and 𝜁(3);Huylebrouck, Dirk;Amer. Math. Monthly,2001

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approximations to the Euler–Mascheroni Constant;Bulletin of the Iranian Mathematical Society;2023-10

2. Applications of Euler Sums and Series Involving the Zeta Functions;Symmetry;2023-08-24

3. On irrationality criteria for the Ramanujan summation of certain series;International Journal of Number Theory;2023-03-27

4. Extension of the four Euler sums being linear with parameters and series involving the zeta functions;Journal of Mathematical Analysis and Applications;2022-11

5. Two parameterized series representations for the digamma function;Applicable Analysis and Discrete Mathematics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3