On the category of cofinite modules which is Abelian

Author:

Bahmanpour Kamal,Naghipour Reza,Sedghi Monireh

Abstract

Let R R denote a commutative Noetherian (not necessarily local) ring and I I an ideal of R R of dimension one. The main purpose of this paper is to generalize, and to provide a short proof of, K. I. Kawasaki’s theorem that the category M ( R , I ) c o f \mathscr {M}(R, I)_{cof} of I I -cofinite modules over a commutative Noetherian local ring R R forms an Abelian subcategory of the category of all R R -modules. Consequently, this assertion answers affirmatively the question raised by R. Hartshorne in his article Affine duality and cofiniteness [Invent. Math. 9 (1970), 145-164] for an ideal of dimension one in a commutative Noetherian ring R R .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. Cofiniteness of local cohomology modules for ideals of small dimension;Bahmanpour, Kamal;J. Algebra,2009

2. Cambridge Studies in Advanced Mathematics;Bruns, Winfried,1993

3. Cofinite modules and local cohomology;Delfino, Donatella;J. Pure Appl. Algebra,1997

4. Affine duality and cofiniteness;Hartshorne, Robin;Invent. Math.,1969

5. On the finiteness of Bass numbers of local cohomology modules;Kawasaki, Ken-Ichiroh;Proc. Amer. Math. Soc.,1996

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Injective dimension of cofinite modules and local cohomology;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-05-12

2. On the first and second problems of Hartshorne on cofiniteness;Communications in Algebra;2024-05-02

3. A characterization of cofinite local cohomology modules in a certain Serre class;Bulletin of the Belgian Mathematical Society - Simon Stevin;2024-04-30

4. Cofiniteness of modules and local cohomology;Rendiconti del Circolo Matematico di Palermo Series 2;2023-10-04

5. On the Abelian categories of cofinite modules;Journal of Algebra and Its Applications;2022-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3