The Lions-Peetre formula for
(
L
p
0
(
A
0
)
,
L
p
1
(
A
1
)
)
θ
,
q
{({L^{{p_0}}}({A_0}),{L^{{p_1}}}({A_1}))_{\theta ,q}}
valid for
q
=
p
(
θ
)
q = p(\theta )
, where
1
/
p
(
θ
)
=
(
1
−
θ
)
/
p
0
+
θ
/
p
1
1/p(\theta ) = (1 - \theta )/{p_0} + \theta /{p_1}
, is shown to have no reasonable generalization for any
q
≠
p
(
θ
)
q \ne p(\theta )
.