The combinatorics of Bernstein functions

Author:

Haines Thomas

Abstract

A construction of Bernstein associates to each cocharacter of a split p p -adic group an element in the center of the Iwahori-Hecke algebra, which we refer to as a Bernstein function. A recent conjecture of Kottwitz predicts that Bernstein functions play an important role in the theory of bad reduction of a certain class of Shimura varieties (parahoric type). It is therefore of interest to calculate the Bernstein functions explicitly in as many cases as possible, with a view towards testing Kottwitz’ conjecture. In this paper we prove a characterization of the Bernstein function associated to a minuscule cocharacter (the case of interest for Shimura varieties). This is used to write down the Bernstein functions explicitly for some minuscule cocharacters of G l n Gl_n ; one example can be used to verify Kottwitz’ conjecture for a special class of Shimura varieties (the “Drinfeld case”). In addition, we prove some general facts concerning the support of Bernstein functions, and concerning an important set called the “ μ \mu -admissible” set. These facts are compatible with a conjecture of Kottwitz and Rapoport on the shape of the special fiber of a Shimura variety with parahoric type bad reduction.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. Schubert cells, and the cohomology of the spaces 𝐺/𝑃;Bernšteĭn, I. N.;Uspehi Mat. Nauk,1973

2. Representations of 𝑝-adic groups: a survey;Cartier, P.,1979

3. Caractères à valeurs dans le centre de Bernstein;Dat, J.-F.;J. Reine Angew. Math.,1999

4. On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells;Deodhar, Vinay V.;Invent. Math.,1985

5. T. Haines, Test Functions for Shimura Varieties: The Drinfeld Case, preprint (1998), to appear in Duke Math. Journal.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3