Extensions of Hopf Algebras and Lie Bialgebras

Author:

Masuoka Akira

Abstract

Let f \mathfrak {f} , g \mathfrak {g} be finite-dimensional Lie algebras over a field of characteristic zero. Regard f \mathfrak {f} and g \mathfrak {g} ^* , the dual Lie coalgebra of g \mathfrak {g} , as Lie bialgebras with zero cobracket and zero bracket, respectively. Suppose that a matched pair ( f , g ) (\mathfrak {f} , \mathfrak {g} ^*) of Lie bialgebras is given, which has structure maps , ρ \rightharpoonup , \rho . Then it induces a matched pair ( U f , U g , , ρ ) (U\mathfrak {f}, U\mathfrak {g}^{\circ },\rightharpoonup ’, \rho ’) of Hopf algebras, where U f U\mathfrak {f} is the universal envelope of f \mathfrak {f} and U g U\mathfrak {g}^{\circ } is the Hopf dual of U g U\mathfrak {g} . We show that the group O p e x t ( U f , U g ) \mathrm {Opext} (U\mathfrak {f},U\mathfrak {g}^{\circ }) of cleft Hopf algebra extensions associated with ( U f , U g , , ρ ) (U\mathfrak {f}, U\mathfrak {g} ^{\circ }, \rightharpoonup ’, \rho ’ ) is naturally isomorphic to the group Opext ( f , g ) \operatorname {Opext}(\mathfrak {f},\mathfrak {g} ^*) of Lie bialgebra extensions associated with ( f , g , , ρ ) (\mathfrak {f}, \mathfrak {g}^*, \rightharpoonup , \rho ) . An exact sequence involving either of these groups is obtained, which is a variation of the exact sequence due to G.I. Kac. If g = [ g , g ] \mathfrak {g} =[\mathfrak {g} , \mathfrak {g}] , there follows a bijection between the set E x t ( U f , U g ) \mathrm {Ext}(U\mathfrak {f} , U\mathfrak {g}^{\circ }) of all cleft Hopf algebra extensions of U f U\mathfrak {f} by U g U\mathfrak {g}^{\circ } and the set E x t ( f , g ) \mathrm {Ext}(\mathfrak {f}, \mathfrak {g}^*) of all Lie bialgebra extensions of f \mathfrak {f} by g \mathfrak {g} ^* .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference30 articles.

1. Notes on extensions of Hopf algebras;Andruskiewitsch, Nicolás;Canad. J. Math.,1996

2. Crossed products and inner actions of Hopf algebras;Blattner, Robert J.;Trans. Amer. Math. Soc.,1986

3. Elements of Mathematics (Berlin);Bourbaki, Nicolas,1989

4. Steinitz field towers for modular fields;MacLane, Saunders;Trans. Amer. Math. Soc.,1939

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimal Triangular Structures on Abelian Extensions;Algebras and Representation Theory;2024-01-12

2. Braided anti-flexible bialgebras;Journal of Algebra and Its Applications;2023-01-13

3. On the quasitriangular structures of abelian extensions of ℤ2;Communications in Algebra;2021-06-10

4. A five-term exact sequence for Kac cohomology;Algebra & Number Theory;2019-07-12

5. Classifying complements for Hopf algebras and Lie algebras;Journal of Algebra;2013-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3