We prove that the Kauffman bracket skein algebra of the cylinder over a torus is a canonical subalgebra of the noncommutative torus. The proof is based on Chebyshev polynomials. As an application, we describe the structure of the Kauffman bracket skein module of a solid torus as a module over the algebra of the cylinder over a torus, and recover a result of Hoste and Przytycki about the skein module of a lens space. We establish simple formulas for Jones-Wenzl idempotents in the skein algebra of a cylinder over a torus, and give a straightforward computation of the
n
n
-th colored Kauffman bracket of a torus knot, evaluated in the plane or in an annulus.