Periodic points of holomorphic maps via Lefschetz numbers

Author:

Fagella Núria,Llibre Jaume

Abstract

In this paper we study the set of periods of holomorphic maps on compact manifolds, using the periodic Lefschetz numbers introduced by Dold and Llibre, which can be computed from the homology class of the map. We show that these numbers contain information about the existence of periodic points of a given period; and, if we assume the map to be transversal, then they give us the exact number of such periodic orbits. We apply this result to the complex projective space of dimension n n and to some special type of Hopf surfaces, partially characterizing their set of periods. In the first case we also show that any holomorphic map of C P ( n ) {\mathbb CP}(n) of degree greater than one has infinitely many distinct periodic orbits, hence generalizing a theorem of Fornaess and Sibony. We then characterize the set of periods of a holomorphic map on the Riemann sphere, hence giving an alternative proof of Baker’s theorem.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference22 articles.

1. V. I. Arnold, Aspects des systèmes dynamiques, Preprint Ecole Polytechnique, Journées X-UPS 1994. Also in Topological Methods in Nonlinear Analysis, Torum, 1994.

2. Behavior of the index of periodic points under iterations of a mapping;Babenko, I. K.;Izv. Akad. Nauk SSSR Ser. Mat.,1991

3. Fixpoints of polynomials and rational functions;Baker, I. N.;J. London Math. Soc.,1964

4. Graduate Texts in Mathematics;Beardon, Alan F.,1991

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Periods of Self-Maps on $${\mathbb{S}}^{2}$$ Via their Homology;Ukrainian Mathematical Journal;2024-06

2. Periods of self-maps on via their homology;Ukrains’kyi Matematychnyi Zhurnal;2024-02-02

3. Dold sequences, periodic points, and dynamics;Bulletin of the London Mathematical Society;2021-07-15

4. Classification of holomorphic endomorphisms of Hopf manifolds;Science China Mathematics;2020-08-11

5. A Note on the Periodic Structure of Transversal Maps on the Torus and Products of Spheres;Qualitative Theory of Dynamical Systems;2020-02-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3