Deformations of local Artin rings via Hilbert-Burch matrices

Author:

Homs Roser,Winz Anna-Lena

Abstract

In the local setting, Gröbner cells are affine spaces that parametrize ideals in \mathbf {k} \lBrack x,y\rBrack that share the same leading term ideal with respect to a local term ordering. In particular, all ideals in a cell have the same Hilbert function, so they provide a cellular decomposition of the punctual Hilbert scheme compatible with its Hilbert function stratification. We exploit the parametrization of Gröbner cells via Hilbert-Burch matrices to compute the Betti strata, with hands-on examples of deformations that preserve the Hilbert function, and revisit some classical results along the way. Moreover, we move towards an explicit parametrization of all local Gröbner cells.

Publisher

American Mathematical Society

Reference22 articles.

1. Hilbert function of local Artinian level rings in codimension two;Bertella, Valentina;J. Algebra,2009

2. Julia: a fresh approach to numerical computing;Bezanson, Jeff;SIAM Rev.,2017

3. Some theorems on actions of algebraic groups;Białynicki-Birula, A.;Ann. of Math. (2),1973

4. Description de 𝐻𝑖𝑙𝑏ⁿ𝐶{𝑥,𝑦};Briançon, Joël;Invent. Math.,1977

5. Déformations distinguées d’un point de 𝐶² ou 𝑅²;Briançon, Joël,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3