Automorphic images of commutative subspace lattices

Author:

Harrison K. J.,Longstaff W. E.

Abstract

Let C ( H ) C(H) denote the lattice of all (closed) subspaces of a complex, separable Hilbert space H H . Let ( AC) ({\text {AC)}} be the following condition that a subspace lattice F C ( H ) \mathcal {F} \subseteq C(H) may or may not satisfy: (AC) \[ F = ϕ ( L ) for some lattice automorphism ϕ of C ( H ) and some commutative subspace lattice L C ( H ) . \begin {array}{*{20}{c}} {\mathcal {F} = \phi (\mathcal {L})\;{\text {for}}\;{\text {some}}\;{\text {lattice}}\;{\text {automorphism}}\;\phi \;{\text {of}}\;C(H)} \\ {{\text {and}}\;{\text {some}}\;{\text {commutative}}\;{\text {subspace}}\;{\text {lattice}}\;\mathcal {L} \subseteq C(H).} \\ \end {array} \] Then F \mathcal {F} satisfies ( AC ) ({\text {AC}}) if and only if A B \mathcal {A} \subseteq \mathcal {B} for some Boolean algebra subspace lattice B C ( H ) \mathcal {B} \subseteq C(H) with the property that, for every K , L B K,L \in \mathcal {B} , the vector sum K + L K + L is closed. If F \mathcal {F} is finite, then F \mathcal {F} satisfies ( AC ) ({\text {AC}}) if and only if F \mathcal {F} is distributive and K + L K + L is closed for every K , L F K,L \in \mathcal {F} . In finite dimensions F \mathcal {F} satisfies ( AC ) ({\text {AC}}) if and only if F \mathcal {F} is distributive. Every F \mathcal {F} satisfying ( AC ) ({\text {AC}}) is reflexive. For such F \mathcal {F} , given vectors x , y H x,y \in H , the solvability of the equation T x = y Tx = y for T Alg F T \in \operatorname {Alg}\,\mathcal {F} is investigated.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference11 articles.

1. Operator algebras and invariant subspaces;Arveson, William;Ann. of Math. (2),1974

2. Weak and strong limits of spectral operators;Bade, William G.;Pacific J. Math.,1954

3. On Boolean algebras of projections and algebras of operators;Bade, William G.;Trans. Amer. Math. Soc.,1955

4. A complete Boolean algebra of subspaces which is not reflexive;Conway, John B.;Bull. Amer. Math. Soc.,1973

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. REFLEXIVE INDEX OF A FAMILY OF SUBSPACES;Bulletin of the Australian Mathematical Society;2014-04-02

2. Characterizations of isomorphisms and derivations of some algebras;Journal of Mathematical Analysis and Applications;2007-08

3. Structural matrix algebras and their lattices of invariant subspaces;Linear Algebra and its Applications;2005-01

4. Local derivations and local automorphisms;Journal of Mathematical Analysis and Applications;2004-02

5. Single Elements of Operator Algebras;Singular Integral Operators, Factorization and Applications;2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3