We propose the conjecture that every automorphism of a knot group preserves the meridian up to inverse and conjugation. We establish the conjecture for all composite knots, all torus knots, most cable knots, and at most one exception for hyperbolic knots; moreover we prove that the Property P Conjecture implies our conjecture. We also investigate hyperbolic knots in more detail, and give an example of figure-eight knot group and its automorphisms.