Potentials producing maximally sharp resonances

Author:

Harrell Evans M.,Svirsky Roman

Abstract

We consider quantum-mechanical potentials consisting of a fixed background plus an additional piece constrained only by having finite height and being supported in a given finite region in dimension d 3 d \leqslant 3 . We characterize the potentials in this class that produce the sharpest resonances. In the one-dimensional or spherically symmetric specialization, a quite detailed description is possible. The maximally sharp resonances that we find are, roughly speaking, caused by barrier confinement of a metastable state, although in some situations they call for interactions in the interior of the confining barrier as well.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. Perturbation theory for shape resonances and large barrier potentials;Ashbaugh, Mark S.;Comm. Math. Phys.,1982

2. \bysame, Maximal and minimal eigenvalues and their associated nonlinear equations, preprint 1985.

3. Local spectral deformation techniques for Schrödinger operators;Balslev, Erik;J. Funct. Anal.,1984

4. Resonances defined by modified dilations;Cycon, H. L.;Helv. Phys. Acta,1985

5. Research Notes in Mathematics;Eastham, Michael S. P.,1982

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotics of Random Resonances Generated by a Point Process of Delta-Interactions;Springer Proceedings in Mathematics & Statistics;2021

2. Pareto optimization of resonances and minimum-time control;Journal de Mathématiques Pures et Appliquées;2020-04

3. Nonlinear Bang–Bang Eigenproblems and Optimization of Resonances in Layered Cavities;Integral Equations and Operator Theory;2017-05

4. Pareto optimal structures producing resonances of minimal decay under L1-type constraints;Journal of Differential Equations;2014-07

5. Long-Lived Scattering Resonances and Bragg Structures;SIAM Journal on Applied Mathematics;2013-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3