A note on Krylov-Tso’s parabolic inequality

Author:

Escauriaza Luis

Abstract

We show that if u u is a solution to i , j = 1 n a i j ( x , t ) D i j u ( x , t ) D t u ( x , t ) = ϕ ( x ) \sum \nolimits _{i,j = 1}^n {{a_{ij}}(x,t){D_{ij}}u(x,t) - {D_t}u(x,t) = \phi (x)} on a cylinder Ω T = Ω × ( 0 , T ) {\Omega _T} = \Omega \times (0,T) , where Ω \Omega is a bounded open set in R n , T > 0 {{\mathbf {R}}^n},T > 0 , and u u vanishes continuously on the parabolic boundary of Ω T {\Omega _T} . Then the maximum of u u on the cylinder is bounded by a constant C C depending on the ellipticity of the coefficient matrix ( a i j ( x , t ) ) ({a_{ij}}(x,t)) , the diameter of Ω \Omega , and the dimension n n times the L n {L^n} norm of ϕ \phi in Ω \Omega .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference8 articles.

1. Majorants of solutions of linear equations of order two;Aleksandrov, A. D.;Vestnik Leningrad. Univ.,1966

2. On the theory of quasilinear elliptic equations;Bakel′man, I. Ja.;Sibirsk. Mat. \v{Z}.,1961

3. Gradient estimates at the boundary for solutions to nondivergence elliptic equations;Barceló, Bartolomé,1990

4. The 𝐿^{𝑝}-integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations;Fabes, E. B.;Duke Math. J.,1984

5. On an Aleksandrov-Bakel′man type maximum principle for second-order parabolic equations;Tso, Kaising;Comm. Partial Differential Equations,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3