Uniform convergence of ergodic limits and approximate solutions

Author:

Shaw Sen-Yen

Abstract

Let A A be a densely defined closed (linear) operator, and { A α } \{ {A_\alpha }\} , { B α } \{ {B_\alpha }\} be two nets of bounded operators on a Banach space X X such that | | A α | | = O ( 1 ) , A α A A A α , | | A A α | | = o ( 1 ) ||{A_\alpha }|| = O(1),{A_\alpha }A \subset A{A_\alpha },||A{A_\alpha }|| = o(1) , and B α A A B α = I A α {B_\alpha }A \subset A{B_\alpha } = I - {A_\alpha } . Denote the domain, range, and null space of an operator T T by D ( T ) D(T) , R ( T ) R(T) , and N ( T ) N(T) , respectively, and let P ( resp . B ) P(\operatorname {resp} .B) be the operator defined by P x = lim α A α x ( r e s p . B y = lim α B α y ) Px = {\lim _\alpha }{A_\alpha }x(resp. By = {\lim _\alpha }{B_\alpha }y) for all those x X ( resp . y R ( A ) ¯ ) x \in X(\operatorname {resp} .y \in \overline {R(A)} ) for which the limit exists. It is shown in a previous paper that D ( P ) = N ( A ) R ( A ) ¯ , R ( P ) = N ( A ) , D ( B ) = A ( D ( A ) R ( A ) ¯ ) , R ( B ) = D ( A ) R ( A ) ¯ D(P) = N(A) \oplus \overline {R(A)} ,R(P) = N(A),D(B) = A(D(A) \cap \overline {R(A)} ),R(B) = D(A) \cap \overline {R(A)} , and that B B sends each y D ( B ) y \in D(B) to the unique solution of A x = y  in  R ( A ) ¯ Ax = y{\text { in }}\overline {R(A)} . In this paper, we prove that D ( P ) = X D(P) = X and | | A α P | | 0 ||{A_\alpha } - P|| \to 0 if and only if | | B α | D ( B ) B | | 0 ||{B_\alpha }|D(B) - B|| \to 0 , if and only if | | B α | D ( B ) | | = O ( 1 ) ||{B_\alpha }|D(B)|| = O(1) , if and only if R ( A ) R(A) is closed. Moreover, when X X is a Grothendieck space with the Dunford-Pettis property, all these conditions are equivalent to the mere condition that D ( P ) = X D(P) = X . The general result is then used to deduce uniform ergodic theorems for n n -times integrated semigroups, ( Y ) (Y) -semigroups, and cosine operator functions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. Vector-valued Laplace transforms and Cauchy problems;Arendt, Wolfgang;Israel J. Math.,1987

2. An application of ergodic theory to the solution of linear functional equations in Banach spaces;Dotson, W. G., Jr.;Bull. Amer. Math. Soc.,1969

3. Oxford Mathematical Monographs;Goldstein, Jerome A.,1985

4. On the range of the generator of a Markovian semigroup;Krengel, Ulrich;Math. Z.,1984

5. On the uniform ergodic theorem;Lin, Michael;Proc. Amer. Math. Soc.,1974

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strong and uniform mean stability of cosine and sine operator functions;Journal of Mathematical Analysis and Applications;2007-06

2. Rates of approximation and ergodic limits of regularized operator families;Journal of Approximation Theory;2003-05

3. Convergence Rates of Regularized Approximation Processes;Journal of Approximation Theory;2002-03

4. Ergodic Theorems with Rates for r-times Integrated Solution Families;Operator Theory and Related Topics;2000

5. Non-Optimal Rates of Ergodic Limits and Approximate Solutions;Journal of Approximation Theory;1998-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3