On the reflexivity of operators on function spaces

Author:

Seddighi K.,Yousefi B.

Abstract

Let Ω \Omega be a bounded plane domain. Sufficient conditions are given so that an operator T T in the Cowen-Douglas class B n ( Ω ) {\mathcal {B}_n}(\Omega ) is reflexive. The operator M z {M_z} of multiplication by z z on a Hilbert space of functions analytic on a finitely connected domain Ω \Omega is shown to be reflexive whenever σ ( M z ) = Ω ¯ \sigma ({M_z}) = \overline \Omega is a spectral set.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference11 articles.

1. (BCP)-operators are reflexive;Bercovici, H.;Michigan Math. J.,1982

2. Finitely connected domains 𝐺, representations of 𝐻^{∞}(𝐺), and invariant subspaces;Chevreau, B.;J. Operator Theory,1981

3. Complex geometry and operator theory;Cowen, M. J.;Acta Math.,1978

4. Generalized Bergman kernels and the Cowen-Douglas theory;Curto, Raúl E.;Amer. J. Math.,1984

5. Every isometry is reflexive;Deddens, James A.;Proc. Amer. Math. Soc.,1971

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reflexive operators on analytic function spaces;Indian Journal of Pure and Applied Mathematics;2021-07-21

2. Property of reflexivity for multiplication operators on Banach function spaces;Proceedings - Mathematical Sciences;2018-06

3. On Some Properties of Cowen-Douglas Class of Operators;Journal of Function Spaces;2018

4. Reflexivity of the shift operator on some BK spaces;Rendiconti del Circolo Matematico di Palermo (1952 -);2013-12-07

5. Reflexivity of Powers of the Multiplication Operator on Special Function Spaces;Acta Mathematica Scientia;2012-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3