On the operator ranges of analytic functions

Author:

Hwang J. S.

Abstract

Following Doob, we say that a function f ( z ) f(z) analytic in the unit disk U U has the property K ( ρ ) K(\rho ) if f ( 0 ) = 0 f(0) = 0 and for some arc γ \gamma on the unit circle whose measure | γ | 2 ρ > 0 \left | \gamma \right | \geqslant 2\rho > 0 , \[ lim inf j | f ( z j ) | 1 where z j z γ and z j U . \lim \inf \limits _{j \to \infty } \left | {f({z_j})} \right | \geqslant 1\quad {\text {where}}\;{z_j} \to z \in \gamma \;{\text {and}}\;{z_j} \in U. \] Let H H be a Hilbert space over the complex field, A A an operator whose spectrum is included in U U , | | A | | || A || the operator norm of A A , and f ( A ) f(A) the usual Riesz-Dunford operator. We prove that there is no function with the property K ( ρ ) K(\rho ) satisfying \[ ( 1 | | A | | ) | | f ( A ) | | 1 / n for all | | A | | > 1 , (1 - || A ||)|| {f’(A)} || \leqslant 1/n\quad {\text {for}}\;{\text {all}}\;|| A || > 1, \] where n > N ( ρ ) = log ( 1 / ( 1 cos ρ ) ) n > N(\rho ) = \log (1/(1 - \cos \rho )) . We also show that if f f has the property K ( ρ ) K(\rho ) then the operator range of f ( A ) f(A) covers a ball of radius k ( ρ ) = 3 / ( 4 N ( ρ ) ) k(\rho ) = \sqrt 3 /(4N(\rho )) . These two results generalize our previous solutions of two long open problems of Doob [1]. Finally, we prove that the operator range of any 4 4 -fold univalent function is not convex. This extends our solution to Ky Fan’s Problem [4].

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference11 articles.

1. The ranges of analytic functions;Doob, Joseph L.;Ann. of Math. (2),1935

2. Conformally invariant cluster value theory;Doob, J. L.;Illinois J. Math.,1961

3. Wiley Classics Library;Dunford, Nelson,1988

4. Analytic functions of a proper contraction;Fan, Ky;Math. Z.,1978

5. Introductions to Higher Mathematics;Hille, Einar,1962

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3