Rational tilings by 𝑛-dimensional crosses

Author:

Szabó Sándor

Abstract

Consider the set of closed unit cubes whose edges are parallel to the coordinate unit vectors e 1 , , e n {{\mathbf {e}}_1}, \ldots ,{{\mathbf {e}}_n} and whose centers are i e j i{{\mathbf {e}}_j} , 0 | i | k 0 \leqslant |i| \leqslant k , in n n -dimensional Euclidean space. The union of these cubes is called a cross. This cross consists of 2 k n + 1 2kn + 1 cubes; a central cube together with 2 n 2n arms of length k k . A family of translates of a cross whose union is n n -dimensional Euclidean space and whose interiors are disjoint is a tiling. Denote the set of translation vectors by L {\mathbf {L}} . If the vector set L {\mathbf {L}} is a vector lattice, then we say that the tiling is a lattice tiling. If every vector of L {\mathbf {L}} has rational coordinates, then we say that the tiling is a rational tiling, and, similarly, if every vector of L {\mathbf {L}} has integer coordinates, then we say that the tiling is an integer tiling. Is there a noninteger tiling by crosses? In this paper we shall prove that if there is an integer lattice tiling by crosses, if 2 k n + 1 2kn + 1 is not a prime, and if p > k p > k for every prime divisor p p of 2 k n + 1 2kn + 1 , then there is a rational noninteger lattice tiling by crosses and there is an integer nonlattice tiling by crosses. We will illustrate this in the case of a cross with arms of length 2 in 55 55 -dimensional Euclidean space. Throughout, the techniques are algebraic.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. Packing and covering by translates of certain nonconvex bodies;Everett, Hugh;Proc. Amer. Math. Soc.,1979

2. Über einfache und mehrfache Bedeckung des 𝑛-dimensionalen Raumes mit einem Würfelgitter;Hajós, Georg;Math. Z.,1941

3. Sur la factorisation des groupes abéliens;Hajós, G.;\v{C}asopis P\v{e}st. Mat. Fys.,1949

4. Factoring groups and tiling space;Hamaker, William;Aequationes Math.,1973

5. Splitting groups by integers;Hamaker, W.;Proc. Amer. Math. Soc.,1974

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliography;North-Holland Mathematical Library;1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3